

(12) United States Patent

Shanmugam et al.

US 9,636,329 B2 (10) Patent No.: May 2, 2017

(45) Date of Patent:

(54) METHODS OF TREATING CANCER WITH GLUT INHIBITORS AND OXIDATIVE PHOSPHORYLATION INHIBITORS

(71) Applicant: Northwestern University, Evanston, IL

Inventors: Malathy Shanmugam, Lisle, IL (US); Steven T. Rosen, Chicago, IL (US)

Assignee: Northwestern University, Evanston, IL (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 347 days.

(21) Appl. No.: 14/073,560

(22)Filed: Nov. 6, 2013

(65)**Prior Publication Data**

US 2014/0142056 A1 May 22, 2014

Related U.S. Application Data

- (60) Provisional application No. 61/723,079, filed on Nov. 6, 2012.
- (51) Int. Cl. A61K 31/427 (2006.01)A61K 31/155 (2006.01)A61K 45/06 (2006.01)
- (52) U.S. Cl. CPC A61K 31/427 (2013.01); A61K 31/155 (2013.01); A61K 45/06 (2013.01)
- Field of Classification Search

See application file for complete search history.

(56)**References Cited**

U.S. PATENT DOCUMENTS

8,084,576 B2*	12/2011	Glover A61K 39/0011
		530/350
2008/0176822 A1*	7/2008	Chen A61K 31/155
		514/162
2012/0252749 A1*	10/2012	Shanmugam G01N 33/57484
		514/34

OTHER PUBLICATIONS

Issa, Z. A., Zantout, M. S., & Azar, S. T. (2011). Multiple myeloma and diabetes. ISRN endocrinology, 2011.*

Iliopoulos, D., Hirsch, H. A., & Struhl, K. (2011). Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types. Cancer research, 71(9), 3196-3201.*

Evans, J. L., Honer, C. M., Womelsdorf, B. E., Kaplan, E. L., & Bell, P. A. (1995). The effects of wortmannin, a potent inhibitor of phosphatidylinositol 3-kinase, on insulin-stimulated glucose transport, GLUT4 translocation, antilipolysis, and DNA synthesis. Cellular signalling, 7(4), 365-376.*

Bredella et al., "Value of FDG PET in the Assessment of Patients with Multiple Myeloma," AJR Am J Roentgenol, 2005, 184(4): 1199-204.

Carr et al., "A Syndrome of Peripheral Lipodystrophy, Hyperlipidaemia and Insulin Resistance in Patients Receiving HIV Protease Inhibitors," AIDS, 1998, 12(7): F51-8.

Cheong et al., "Dual Inhibition of Tumor Energy Pathway by 2-Deoxyglucose and Metformin is Effective Against a Broad Spectrum of Preclinical Cancer Models," Mol Cancer Ther, 2011, 10(12): 2350-62

Durie et al., "Whole-Body (18)F-FDG PET Identifies High-Risk Myeloma," J Nucl Med, 2002, 43(11): 1457-63.

El-Mir et al., "Dimethylbiguanide Inhibits Cell Respiration Via an Indirect Effect Targeted on the Respiratory Chain Complex I," J Biol Chem, 2000, 275(1): 223-8.

Evans et al., "Metformin and Reduced Risk of Cancer in Diabetic Patients," BMJ, 2005, 330(7503): 1304-5.

Hertel et al., "A Structural Basis for the Acute Effects of HIV Protease Inhibitors on GLUT4 Intrinsic Activity," J Biol Chem, 2004, 279(53): 55147-52.

Hresko et al., "HIV Protease Inhibitors Act as Competitive Inhibitors of the Cytoplasmic Glucose Binding Site of GLUTs with Differing Affinities for GLUT1 and GLUT4," PLoS One, 2011, 6(9): e25237.

Hsu et al., "Multiple-Dose Pharmacokinetics of Ritonavir in Human Immunodeficiency Virus-Infected Subjects," Antimicrob Agents Chemother, 1997, 41(5): 898-905.

Kohli et al., "A Randomized Placebo-Controlled Trial of Metformin for the Treatment of HIV Lipodystrophy," HIV Med, 2007, 8(7):

McBrayer et al., "Multiple Myeloma Exhibits Novel Dependence on GLUT4, GLUT8, and GLUT11: Implications for Glucose Transporter-Directed Therapy," Blood, 2012.

Munshi, "Plasma Cell Disorders: An Historical Perspective," Hematology, 2008, 297.

Murata et al., "The Mechanism of Insulin Resistance Caused by HIV Protease Inhibitor Therapy," J Biol Chem, 2000, 275(27): 20251-4.

Owen et al., "Evidence that Metformin Exerts its Anti-Diabetic Effects Through Inhibition of Complex 1 of the Mitochondrial Respiratory Chain," Biochem J, 2000, 348 Pt 3: 607-14.

Sahra et al., "Metformin in Cancer Therapy: a New Perspective for an Old Antidiabetic Drug?", Mol Cancer Ther, 2010, 9(5): 1092-9. Vander Heiden et al., "Growth Factors Can Influence Cell Growth and Survival Through Effects on Glucose Metabolism," Mol Cell Biol, 2001, 21(17): 5899-912.

(Continued)

Primary Examiner — Shaojia Anna Jiang Assistant Examiner — Dale R Miller (74) Attorney, Agent, or Firm — Andrus Intellectual Property Law, LLP

ABSTRACT (57)

Disclosed herein are methods of treating, diagnosing, and prognosing GLUT-dependent cancers and OXPHOS-dependent cancers. In some embodiments, the methods comprise administering to a patient in need thereof a GLUT inhibitor and/or an OXPHOS inhibitor. The inhibitors may be administered before, concurrently, or after one another. Suitable GLUT-dependent cancers may include a GLUT4-dependent cancer, a GLUT8-dependent cancer, and a GLUT11-dependent cancer. Suitable GLUT inhibitors may include a GLUT4 inhibitor, a GLUT8 inhibitor, and a GLUT11 inhibitor. Suitable OXPHOS-dependent cancers may include mitochondrial OXPHOS-dependent cancers, including cancers that have developed resistance to treatment with a GLUT-inhibitor.